公路障碍检测是一个重要的研究领域,属于智能运输基础设施系统的范围。基于视觉的方法的使用为此类系统提供了准确且具有成本效益的解决方案。在这篇研究论文中,我们提出了一种使用仪表板视频的自动驾驶自动驾驶汽车的威胁检测机制,以确保在其视觉范围内的道路上存在任何不必要的障碍物。此信息可以帮助车辆的计划安全。有四个主要组件,即Yolo来识别对象,高级车道检测算法,多回归模型,用于测量对象与摄像机的距离,测量安全速度的两秒钟规则和限制速度。此外,我们已经使用了车祸数据集(CCD)来计算模型的准确性。Yolo算法的精度约为93%。我们提出的威胁检测模型(TDM)的最终准确性为82.65%。
translated by 谷歌翻译
分类脑电图(EEG)信号有助于理解脑部计算机界面(BCI)。脑电图信号对于研究人类思维的运作方式至关重要。在本文中,我们使用了一个算术计算数据集,该数据集由计算信号(BC)和计算信号(DC)组成。数据集由36位参与者组成。为了了解大脑中神经元的功能,我们对BCS与DCS进行了分类。对于此分类,我们提取了各种特征,例如相互信息(MI),相位锁定值(PLV)和熵置换熵,光谱熵,奇异值分解熵,近似熵,样品熵。这些功能的分类是使用基于RNN的分类器(例如LSTM,BLSTM,ConvlSTM和CNN-LSTM)完成的。当将熵用作特征并作为分类器时,该模型的精度为99.72%。
translated by 谷歌翻译
This volume contains revised versions of the papers selected for the third volume of the Online Handbook of Argumentation for AI (OHAAI). Previously, formal theories of argument and argument interaction have been proposed and studied, and this has led to the more recent study of computational models of argument. Argumentation, as a field within artificial intelligence (AI), is highly relevant for researchers interested in symbolic representations of knowledge and defeasible reasoning. The purpose of this handbook is to provide an open access and curated anthology for the argumentation research community. OHAAI is designed to serve as a research hub to keep track of the latest and upcoming PhD-driven research on the theory and application of argumentation in all areas related to AI.
translated by 谷歌翻译
The exercise of detecting similar bug reports in bug tracking systems is known as duplicate bug report detection. Having prior knowledge of a bug report's existence reduces efforts put into debugging problems and identifying the root cause. Rule and Query-based solutions recommend a long list of potential similar bug reports with no clear ranking. In addition, triage engineers are less motivated to spend time going through an extensive list. Consequently, this deters the use of duplicate bug report retrieval solutions. In this paper, we have proposed a solution using a combination of NLP techniques. Our approach considers unstructured and structured attributes of a bug report like summary, description and severity, impacted products, platforms, categories, etc. It uses a custom data transformer, a deep neural network, and a non-generalizing machine learning method to retrieve existing identical bug reports. We have performed numerous experiments with significant data sources containing thousands of bug reports and showcased that the proposed solution achieves a high retrieval accuracy of 70% for recall@5.
translated by 谷歌翻译
Gradient-based first-order convex optimization algorithms find widespread applicability in a variety of domains, including machine learning tasks. Motivated by the recent advances in fixed-time stability theory of continuous-time dynamical systems, we introduce a generalized framework for designing accelerated optimization algorithms with strongest convergence guarantees that further extend to a subclass of non-convex functions. In particular, we introduce the \emph{GenFlow} algorithm and its momentum variant that provably converge to the optimal solution of objective functions satisfying the Polyak-{\L}ojasiewicz (PL) inequality, in a fixed-time. Moreover for functions that admit non-degenerate saddle-points, we show that for the proposed GenFlow algorithm, the time required to evade these saddle-points is bounded uniformly for all initial conditions. Finally, for strongly convex-strongly concave minimax problems whose optimal solution is a saddle point, a similar scheme is shown to arrive at the optimal solution again in a fixed-time. The superior convergence properties of our algorithm are validated experimentally on a variety of benchmark datasets.
translated by 谷歌翻译
End-to-end text-to-speech (TTS) systems have been developed for European languages like English and Spanish with state-of-the-art speech quality, prosody, and naturalness. However, development of end-to-end TTS for Indian languages is lagging behind in terms of quality. The challenges involved in such a task are: 1) scarcity of quality training data; 2) low efficiency during training and inference; 3) slow convergence in the case of large vocabulary size. In our work reported in this paper, we have investigated the use of fine-tuning the English-pretrained Tacotron2 model with limited Sanskrit data to synthesize natural sounding speech in Sanskrit in low resource settings. Our experiments show encouraging results, achieving an overall MOS of 3.38 from 37 evaluators with good Sanskrit spoken knowledge. This is really a very good result, considering the fact that the speech data we have used is of duration 2.5 hours only.
translated by 谷歌翻译
Over the recent twenty years, argumentation has received considerable attention in the fields of knowledge representation, reasoning, and multi-agent systems. However, argumentation in dynamic multi-agent systems encounters the problem of significant arguments generated by agents, which comes at the expense of representational complexity and computational cost. In this work, we aim to investigate the notion of abstraction from the model-checking perspective, where several arguments are trying to defend the same position from various points of view, thereby reducing the size of the argumentation framework whilst preserving the semantic flow structure in the system.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
This work introduces the novel task of Source-free Multi-target Domain Adaptation and proposes adaptation framework comprising of \textbf{Co}nsistency with \textbf{N}uclear-Norm Maximization and \textbf{Mix}Up knowledge distillation (\textit{CoNMix}) as a solution to this problem. The main motive of this work is to solve for Single and Multi target Domain Adaptation (SMTDA) for the source-free paradigm, which enforces a constraint where the labeled source data is not available during target adaptation due to various privacy-related restrictions on data sharing. The source-free approach leverages target pseudo labels, which can be noisy, to improve the target adaptation. We introduce consistency between label preserving augmentations and utilize pseudo label refinement methods to reduce noisy pseudo labels. Further, we propose novel MixUp Knowledge Distillation (MKD) for better generalization on multiple target domains using various source-free STDA models. We also show that the Vision Transformer (VT) backbone gives better feature representation with improved domain transferability and class discriminability. Our proposed framework achieves the state-of-the-art (SOTA) results in various paradigms of source-free STDA and MTDA settings on popular domain adaptation datasets like Office-Home, Office-Caltech, and DomainNet. Project Page: https://sites.google.com/view/conmix-vcl
translated by 谷歌翻译
Reinforcementlearning(RL)folkloresuggeststhathistory-basedfunctionapproximationmethods,suchas recurrent neural nets or history-based state abstraction, perform better than their memory-less counterparts, due to the fact that function approximation in Markov decision processes (MDP) can be viewed as inducing a Partially observable MDP. However, there has been little formal analysis of such history-based algorithms, as most existing frameworks focus exclusively on memory-less features. In this paper, we introduce a theoretical framework for studying the behaviour of RL algorithms that learn to control an MDP using history-based feature abstraction mappings. Furthermore, we use this framework to design a practical RL algorithm and we numerically evaluate its effectiveness on a set of continuous control tasks.
translated by 谷歌翻译